Harper—Dorn Creep and Specimen Size

E. NES, W. BLUM, and P. EISENLOHR

Under conditions typical of Harper—Dorn (H-D) creep the dtatistical dlip-length may become
comparable to, or even exceed, the specimen diameter (a size effect). It is demonstrated that a
conseguence of such a size effect is that the rates of dislocation storage and dynamic recovery are
reduced and the static recovery rate will exceed the dynamic one. Under such conditions, the analysis
shows that the creep rate will scale linearly with the applied stress, a characteristic of H-D creep.

[. INTRODUCTION

HARPER-DORN (H-D) creep was first reported in
1957 by Harper and Dorn,[¥ who tested tensile specimens
of both single and polycrystalline pure aluminum (99.99) at
very low stresses and at temperatures near the melting point.
Since then, the phenomenon has been subjected to numerous
experimental and theoretical investigations. From the creep
literature (for reviews, see References 2 through 5) the pri-
mary characteristics of H-D creep can be summarized as
follows. (@) H-D creep is a steady-state phenomenon. (b)
The stress exponent is, as in Nabarro—Herring creep, equal
to 1, but the kinetics can be more than two orders of magni-
tudefaster than thisvariant of diffusion creep. (¢) Theactiva
tion energy of H-D creep is close to that of self-diffusion.
(d) The phenomenon is commonly interpreted in terms of
adislocation mechanism. (€) The dislocation density is very
low (of the order 5 - 10’ m2) and independent of stress.
Most recently, however, the phenomenon has been subjected
to a somewhat more critical re-examination. New experi-
ments cast doubt about its existence, as experiments by Blum
et al.l% on high purity aluminum showed no evidence of
this low stress deviation from power-law creep (Figure 1).
Blum et al. performed compression experiments on speci-
mens of much larger cross section than commonly used;
accordingly, they opened for speculation theinterpretation of
H-D creep as a size effect.[l Ginter et al.!® and Mohamed!®
suggest that a pure dislocation mechanism may be insuffi-
cient in the interpretation of this creep phenomenon, and
these authors also contribute to speculations about its tran-
sient nature. The purpose of this article is to explore the
new idea that the occurrence of H-D creep is a size effect.
The model to be developed is of a general character, but
the application considered will be limited to H-D creep
observations in auminum. Since the model to be presented
relies on a dislocation network description, the model and
observations of Ardell and co-workerd®19l are of some
relevance in this context; accordingly, some aspects of their

E. NES, Professor, is with the Department of Materials Technology and
Electrochemistry, Norwegian University of Science and Technology, 7034
Trondheim, Norway. W. BLUM, Professor, and P. EISENLOHR, Graduate
Student, are with the Institut fur Werkstoffwissenschaften LS 1, University
of Erlangen, 91058 Erlangen, Germany.

This article is based on a presentation made in the workshop entitled
“Mechanisms of Elevated Temperature Plasticity and Fracture,” which was
held June 27-29, 2001, in San Diego, CA, concurrent with the 2001 Joint
Applied Mechanics and Materials Summer Conference. The workshop was
sponsored by Basic Energy Sciences of the United States Department
of Energy.

METALLURGICAL AND MATERIALS TRANSACTIONS A

network model and observations will be briefly reviewed
first.

[I. NETWORK MODEL

Ardell and co-workerd®%11 have developed a network
model, which they claim explains both the transient primary-
creep stage and the subseguent H-D creep. The transient
starts, according to their observations, with a dislocation
burst on loading, resulting in an initial high strain rate and
dislocation density, followed by arapid decay in both quanti-
ties[* This dislocation decay is interpreted in terms of
network growth, a phenomenon, which according to experi-
mental observations, rapidly stagnates and renders a steady-
state Frank network accommodating H-D creep. This stag-
nation isinterpreted in terms of a“frustration phenomenon”
induced by enforcing Frank’s rule at the nodes.[*” The phys-
ics of this growth reaction isless clear. In terms of common
interpretations of the growth of a two-dimensional network,
Figure 2(a), loops that are made up of many link-length
segments will expand due to the shrinkage of those with
fewer, in analogy with grain growth. The driving force for
the reaction results from elastic interactions due to the dislo-
cation stressfieldsin combination with nodestrying to main-
tain loca line-tension equilibrium (Figure 2(b)). Collapse
of such loops will, of course, never violate Frank’s rule, and
without any other restriction imposed, this network can never
be“frustrated.” Network growth, however, may stagnate due
to other reasons. In the present situation, the effect of the
10 to 100 ppm of impurities in solid solution will have
such an effect. The problem, however, of understanding
the network model for H-D creep does not pertain to the
establishment of a quas stationary network due to disloca-
tion interactions and line-tension forces but to how such
a network can accommodate the observed meta plasticity
without the operation of dislocation sources to maintain a
steady-state dislocation density. No simple physical picture
has been presented by Ardell and co-workers, as a back-
ground for their lengthy derivations devel oped to prove H—D
creep.[® Further, no convincing argument has been pro-
vided for how such a network satisfies the boundary condi-
tions imposed by the Orowan relationship:

¥ = bpnv (1]
where ¥ is the shear strain rate, p,, is the density of mobile

didocations, b is the Burgers vector length, and v is the
average speed of the mobile dislocations. Since the Ardell
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Fig. 1—Creep rate (&) of pure Al as afunction of normal stress (o) at 923
K, asreported in Ref. 7. Small circles: steady-state compressive creep rates
measured with rod/tube extensometers,'® large circles: compressive creep
rates measured with contactless laser extensometer at some distance from
steady state in primary transient creep,[”? and shaded area: tensile creep
rates from literature, as collected in Ref. 6.

model(*1°14 excludes mobile dislocations due to the opera-
tion of dislocation sources, the network itself must, in addi-
tion to being a stable Frank configuration, also act in a
dynamic way providing the mobile dislocations required in
order to satisfy EqQ. [1]. Or, in other words, the total number
of segmentsinthe Frank network must migratein aconcerted
manner in such a way that the Orowan relation is obeyed.
Selecting typical valuesfor the strain rate and the dislocation
density during H-D creep, this average speed becomes of
the order 10 um/s. How such a migration pattern can be
reconciled with a stable network is difficult to understand.
Its consequence, in the absence of active sources, seems to
be that most segments will have left the specimen in about
1000 seconds. However, as will be shown in the following
section, the observations of Ardell and co-workers can be
rationalized in terms of a size effect, the result of which is
the change in power-law creep exponent from 4 to 1, the
latter typical of H-D creep.

1. HARPER-DORN CREEP, A SIZE EFFECT

A. Didlocation Structure Evolution

TheH-D creep experiments, conducted on nearly disloca-
tion-free specimens of high purity aluminum at temperatures
close to the melting point, result upon loading in a strain
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Fig. 2—(a) Two-dimensional dislocation network. The individual loops
contain different numbers of links. (b) Instable loop consisting of three
segments. Solid linesrepresent nodal force equilibrium. Concurrent minimi-
zation of dislocation curvature (dashed lines) disturbs the nodal force bal-
ance, which leads to shrinkage and eventually collapse of the loop.

burst introducing arelatively high density of initially mobile
dislocations, as demonstrated by the investigation by Ardell
and co-workers. The way these dislocations contribute to
strengthening is given in terms of resolved shear stresses by

r=n+ 2]

where 7isthe applied stress, 7 is the thermal stress compo-
nent, and 7 is the atherma component. Since strengthening
under these conditions seems to be affected by subgrains to
amarginal extent only,[® the athermal strength contributions
can be calculated on the basis of a one-parameter description
in a standard way; i.e., this component becomes

7= aGb/p [3]

where « is a constant (=~0.3), G is the shear modulus, and
p is the density of stored dislocations.

In order to follow the transition towards a steady-state
condition, the dislocation evolution equation needs to be
solved. Thisimportant problem has recently been considered
by Nes and co-workers,[**-18 from which treatments of only
the aspects relevant in the present context will be briefly
reviewed. Previous treatments, however, neglected the effect
of static recovery on the network evolution during plastic
deformation, the reason for this being that the static contribu-
tion, for good reasons, is generally assumed to be signifi-
cantly lower than the dynamic one. Thisis, aswill be shown
subsequently, not necessarily the case under such extreme
conditions typical of H-D creep.

Under the dynamic conditions of metal plasticity, the net-
work evolution (p) is commonly analyzed in terms of the
combined result of athermal storage of dislocations (p*) and
dynamic recovery (p"); i.e.,

p=p"+p [4]
Dislocations are stored, due to interactions between already
stored segments in the Frank network and mobile disloca
tions, at the rate

/')*=b—2L'y,whereL=£ [5]

Jp

and C > 1isanumerical constant. The quantity L represents
the average distance a mobile dislocation migrates from the
sourceto the sitewhereit is stored in the network; Reference
13 gives detailed statistical anaysis.
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B. Satic vs Dynamic Recovery

Dynamic recovery is commonly interpreted as the result
of local annihilation reactions between mobile dislocations
and stored dislocation segments in the Frank network.[*3-18]
Under dynamic conditions such annihilation reactions are
assumed to destabilize the evolving network much more
effectively than network growth dueto the stored line energy,
i.e., static recovery. In principle, however, thelatter contribu-
tion to recovery should be included, aswasdonein an earlier
treatment by Estrin.l’¥ Further, as will be demonstrated in
the following, under extreme conditions, such as close to
the melting point (H-D creep), static recovery may even
contribute more effectively to network growth than dynamic
recovery. Accordingly, the total recovery reaction during
metal plasticity becomes

f.f = ,baynamic + p;atic [6]

The dynamic recovery model for a Frank dislocation net-
work developed by Nes and Marthinsen!*3-l is based on
the assumption that network growth is controlled by the
collapse of dislocation dipoles of separation |, where the
dipole configurations are the result of interactions between
the stored network dislocations and mobile ones. It follows
that |4 is expected to be much smaller than the average
separation of stored dislocations, i.e., lg = 1/.;—\/,5 where &
isascaling parameter >>1. The collapse rate of dipoles will
result in a dynamic recovery rate given by

Paynamic = —Vgp [7]

where v, isthedislocation collapsefrequency. In pure metals,
where climb is expected to be rate controlling, the collapse
reaction is expected to be driven by the sharp curvatures
resulting from dipole pinch-off reactions (References 14
and 16). The pinched-off segments will then rapidly climb
sidewise due to large curvature forces. The collapse fre-
quency then becomes v, = 2vc\/Z, where v, is the climb
speed given by

ﬁ 2snh—

KT
Fb? Usp
~ B c [ — _-®
2vachJ<kT)exp< kT)

where vp = Debye frequency, Uy, = activation energy for
selfdiffusion and T = temperature.

The curved segments generate a driving force, F =
21“/IZq = 2I'&/p, whereT isthe dislocation linetension (I' =
(GbZ/47(1 — V) In(Ub./p) ~ 1.7Gb? for p ~ 10" m™2), B,
is a constant of order unity, and ¢; represents the concentra-
tion of trailing jogs controlling the climb rate of the curved
segments, i.e., ¢ = Ulj, wherel; is the separation of trailing
jogs, a quantity that is expected to scale with the dipole
separation. Typical ¢values are of the order 30 (as discussed
subsequently), which implies that F =~ 100 o b (o applied
normal stress). Under such high driving forces, vacancy
equilibrium is not expected to be established at the jogs,
and it follows from Reference 12 that the jog climb-rate
under such conditions takes the form expressed by Eq. [8].
For more details, see References 13 through 16.

It follows from the classic treatments by Friedel®? and
Hirth and Lothe!® that the growth of the Frank network

U 2
Ve = Vpb®B, ¢ exp (— SD) Fb

(8]
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due to line-tension forces will cause an additional recovery
rate written in the form

3
Psatic = _BFNp2<%>DSD (9
where Dy is the sdf-diffusion parameter, and Bgy =
B2\ 27/ In (1/b./p) where B2 is aparameter of order unity.
Under steady-state conditions (p = 0), combination of Egs.
[2] and [4] through [8] (assuming 7; < 7) resultsin aconstitu-
tive law for power-law creep with the stress exponent equal
to 4131418 when the effect of static recovery can be
neglected; for further comments on the static recovery effect,
see the subsequent discussion. However, if the temperature
is increased, approaching that of the melting point (H-D
region), the dislocation density will decrease to very low
levels. The consequence becomes that the dip-length, L,
will increase, and a situation will eventually emerge where
the dlip-length becomes comparable to or even larger than
the specimen diameter. When such a situation arises, the
specimen sizewill affect both the storage rate of dislocations
and their dynamic recovery rate, i.e, a size effect has
been established.

C. A Sze Effect

The effect of reducing the specimen cross section on the
substructure evolution can be analyzed in an approximate
way by redefining Eq. [5] as follows:

h a2 B R?

P S W S = e e R T R
where Risthe specimen radius, and A isaparameter expected
to be of the order 1 (reflecting surface conditions). The idea
behind this Sparameter is that when the dlip-length becomes
comparable to, or larger than, the specimen radius, then, Eq.
[6] nolonger isvalid since this relationship then will include
the effect of sources located in an area (R + L)> — R?)
outside the specimen, i.e., phantom sources. By multiplying
by Sat theright side in Eq. [5], the effect of these phantom
sources is excluded.* This S parameter, however, should

[10]

*The introduction of this S parameter is consistent with the statistical
treatment of the dislocation storage problem presented in Reference 13, in
the sensethat S(not S¥2) appearsin Eq. [10]. An extension of this statistical
treatment to include the size effect is a difficult problem, indeed.

capture the salient physical consequence of asize effect with
the boundary conditions satisfied; i.e, whenL < R, S -
1, andwhen L > R, S - 0; the latter case corresponds to
no storage at al, as expected.

Thedynamicrecovery ratewill be affected in an anal ogous
way. As the storage rate decreases, the density of dipole
configurations will necessarily decrease, with the reduction
rate per unit volume expected to scale with S¥2. And, it
follows that Eq. [7] takes the form

-p(;ynamic = _Sslzvgp [11]

This relationship satisfies the boundary conditions, i.e.,
if L < R, Eq. [11] becomes equal to Eq. [7], and if L >
R, the dynamic recovery rate approaches zero. The static
recovery rate will, of course, not be affected by any size
effect. By solving the microstructural evolution law under
steady-state conditions, p = 0, i.e., by combining Egs. [4],
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[6], and [8] through [11], the effect of specimen size on the
creep rate becomes

__bCGD? (Bey 4
Y72 kT(Sp D

U
+ /S13.6 b%2B, pAvp exp (—ﬁ’?))

As long as the thermal component of the flow stress is
negligible so that 7~ 7, onefinds from Egs. [3] and [12] that

':_C G_b3 %13[)
Y2\ kT )| s \Gg) P

13.602 ¢ u 1]
2 e e ]

(44

Under conditionswhereL > R (and A ~ 1), thisequation
reduces to

3 b3 B
. C°Gb Ben 7 [14]

YT 2%kt P RG

which isa congtitutive relationship rationalizing H-D creep.

The model prediction according to Eg. [13] is shown in
Figure 3 for a specimen diameter of 12 mm. The parameter
values used are Dy = 1.76 - 107° exp (—Ug/RT) m?/s[2Y
Ugp = 126153 Jmol,! G = 2,99 - 10* exp (—54 -
1074 T/k MPa, vp = 108 s7!, o = 0.3, C = 100, B\ =
001, B,= 3, A =1 and £ = 30, (A, By, and B, are the
only fitting parameters involved, and the values used for
those are reasonable (References 14 and 16)). The choice
was done such that the model curvefitsthelow-stresstensile
data (shaded area) from specimens with diameters of about
2 inch. At relatively high stresses, the dynamic recovery
contribution isdominant; at low stresses, the static one domi-
nates. The broken line in Figure 3 shows the creep-rate
contribution caused by static recovery in the absence of a
size effect, and the conclusion becomesthat creep controlled
by static recovery will in genera only be detectable under
conditions where the specimen diameter becomes compara-
ble to or smaller than the slip length (size effect).

D. The Didlocation Density Aspect

As pointed out in the introduction, it follows from the
creep literature that a characteristic aspect of H-D creep is
astrain-rate invariant dislocation density. However, the size
effect model presented in the previous section does not pre-
dict such a creep-behavior in the H-D region. To the con-
trary, by solving the substructure evolution law (Eg. [4])
under steady-state conditionsand with L >> R, the prediction
becomes that \/7; o« Y. As pointed out in Reference 13, a
strain-rate, (or stress) invariant, constant steady-state dislo-
cation density cannot be reconciled with an appropriate solu-
tion of Eq. [4], i.e, such a condition is in conflict with
the laws of physics governing steady-state conditions. Two
possibilities then remain; either the H-D creep is not a true
steady-state phenomenon (a transient), or the dislocation
density measurements are not accurate enough. The latter
possibility needs to be considered for the following reason.
It is the personal experience of one of the present
authord®22l that the handling of high purity aluminum with
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Fig. 3—Steady-state creep rates as modeled by Eqg. [13] for a specimen
with 12 mm diameter in dependence of normal stressat 923 K (¥l = ol 7
= 3). The contributions from dynamic and static recovery dominate at high
and low stresses, respectively. The broken line shows the steady-state creep
rate due to static recovery in the absence of a size effect. Shaded area: as
in Fig. 1.

dislocation densities of 10’ m~2 or less (flow stresses of less
than 1 g/mm?) probably is not possible without introducing
additional dislocations during demounting, transportation,
and polishing of the specimens. A dislocation density of 5
- 10" m~2, reported to be the typical level of H-D creep,
may simply reflect the lowest possible dislocation density
to be revealed by etch-pit techniques.

E. Metal Purity and Experimental Conditions

It needs to be pointed out that commercial high purity
grades of aluminum used in H—D creep experiments are not
high purity metals in the true meaning of the word. This
becomes particularly relevant under such extreme condi-
tions, as those prevailing under H—D creep. This probably
explains the considerable spread in experimental data when
comparing results from different groups, as shown in Figures
1 and 3. For an interesting review of impurity effects, see
Reference 5. In the investigation of a possible size effect,
it becomes important that only one grade of high purity
aluminum is tested.

IV. DISCUSSION

It has been shown that the high creep rates during H-D
creep may result from a size effect. The effect rests on
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Fig. 4—Strain-time curve from the compression test with the specimen of
11 mm side length and aspect ratio of 2 at 923 K and 0.040 MPa with an
increase in stress to 0.055 MPa.

the assumption that the surface of Al specimens does not
represent a barrier dislocations. This assumption appears
reasonable in view of the extremly small volume fraction
of the oxide shell. It has aso been confirmed experimentally
by Nest and Nes,[? their in-situ X-ray topography investiga-
tion of auminum crystals under load clearly revealed that
the surfacesacted as perfect sinksfor the mobiledislocations.
Note that the specimen size effect differs from the grain size
effect. Due to compatibility requirements, dislocations are
not free to leave the grains at the boundaries. In this case,
there is a reduction in dlip distance, L, with reduction in
grain size, leading to a decrease in steady-state creep rate
in opposition to the specimen size effect occurring under
H-D creep conditions.[*514

The fit of the model curve to the experimental data in
Figure 3 becomes imperfect as the stress increases. The
reason issimply that the dynamic recovery termis connected
with a stress exponent of 4, whilen = 5 is observed experi-
mentally. Thereis aneed to improve the description of creep
in that range. The important point to be emphasized here is
that a size effect is predicted in the low stress range of
H-D creep.

The size effect hasto be checked by independent measure-
ments. It should be noted that in cubical compression speci-
mens the dislocations are not free to leave the surfaces
because their glide planes usually intersect the compression
faces. Therefore, tensile tests on long specimens with differ-
ent diameters appear to be most suitable to test the size
effect. Recently, McKnee et al.[?d have reported that they
could not generally confirm H-D creep except for a few
cases. Unfortunately, the specimen sizes were not given in
their work so that a size effect is not excluded.

An effort was made within the present work to demon-
strate the predicted size effect experimentally. For this pur-
pose, a tall compression specimen with a cross section of
11 mm X 11 mm and an aspect ratio of 2.3 was deformed
at 0.040 MPa and 923 K. Length measurement was done
with alaser extensometer. The accuracy of the extensometer
was inadvertently demonstrated by a slow decrease in test
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Fig. 5—Creep rate-strain curve from the compression test of Fig. 4. Creep
rate is calculated from the slope of the smoothed line in Fig. 4.
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Fig. 6—Model curves for specimens of 12 and 30 mm diameter and com-
pression creep data for specimens with 11 mm (large circles) and 29-mm
(small circles) side length.

temperature by 4 K, which led to the thermal contraction
expected from the expansion coefficient of pure Al. Figure
4 shows the strain-time response. After nearly 300 hours,
the stress was increased to 0.055 MPa. Figure 5 shows the
creep rate, &, as function of creep strain . There is no
indication of a primary range of creep with decrease of &
within the small ¢ interval investigated. The creep rates
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corresponding to the horizontal lines of Figure 5 are shown
in Figure 6 as large full circles. They indicate a deviation
from the straight line derived from the data points of Figure
1 obtained from big, nearly cubical specimens. It isinterest-
ing to note that they also agree very well with the results
of McKnee et al. measured in tensile tests.|?! The size effect
should cause a difference by a factor of 2 to 3 between the
steady-state creep rates of specimens with 12 and 30 mm
diameter at a stress of 0.04 MPa (cf. Figure 6). This is
consistent with the distance by which the experimental data
for compression specimens with 11 mm side length differ
from the line for compression specimens with 29 mm side
length at 0.04 MPa. The slope of the line for the 11-mm
compression specimens agrees closely to the slope of the
model line for 12-mm diameter. It is concluded that the
present test supportsthe size effect not only from the absolute
magnitude but also from the low stress dependence of the
creep rate.

V. SUMMARY

A simple model has been proposed that predicts an effect
of specimen size on the steady-state creep rate at very low
stresses, where the dlip distance of gliding dislocations
becomes comparable to the specimen diameter. The effect
results from the laws of dislocation-structure evolution
through a reduction of the rates of dislocation storage as
well as of dynamic dislocation recovery in the presence of
static recovery of the dislocation network, which due to its
localized nature is insensitive to specimen size. The result
is that the steady-state density of dislocations is reduced,
and the steady-state creep rate is increased with reduced
specimen cross section. The effect becomes more pro-
nounced with decreasing stress and increasing dislocation-
structural dimensions. In this way, the stress exponent is
decreased from avalue in the order of 4 to 5 to avaue near
1. A test with atall compression specimen having arelatively
large aspect ration of 2.03 at low stresses confirms the exis-
tence of a size effect not only by the absolute magnitude of
the creep rate but also by the low stress exponent. The size
effect explains the well known H-D creep behavior.
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